

Bio-Inspired Intelligent Sensing Materials for Fly-by-Feel Autonomous Vehicle

MURI Team

Participating Institutions:

Stanford University, University of California at Los Angles, New York Institute of Technology, University of Colorado at Boulder, Johns Hopkins University, and University of British Columbia, Canada

a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	70	
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
15. SUBJECT TERMS					
14. ABSTRACT					
Grantees'/Contrac Microsystems Held		FOSR Program on 2012 in Arlington,	Mechanics of Mu VA. Sponsored by	ltifunctional	
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distribut	ion unlimited			
				11. SPONSOR/M NUMBER(S)	IONITOR'S REPORT
9. SPONSORING/MONITO	RING AGENCY NAME(S)	AND ADDRESS(ES)		10. SPONSOR/M	IONITOR'S ACRONYM(S)
	zation name(s) and ai y,450 Serra Mall,St	` /		8. PERFORMING REPORT NUMB	G ORGANIZATION ER
				5f. WORK UNIT	NUMBER
				5e. TASK NUMI	BER
6. AUTHOR(S)				5d. PROJECT NI	JMBER
Vehicle			5c. PROGRAM I	ELEMENT NUMBER	
-	igent Sensing Mater	rials for Fly-by-Fee	l Autonomous	5b. GRANT NUN	MBER
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
1. REPORT DATE AUG 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	ERED 2 to 00-00-2012
maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headquald be aware that notwithstanding a DMB control number.	tion of information. Send commen parters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of to s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington

Report Documentation Page

Form Approved OMB No. 0704-0188

Advantages of UAV

- Lower Cost in Manufacturing
- •Reduced Cost in Maintenance and Operation
- Energy Saving for Smaller Size
- •Minimal Human Risk

Aircraft Landing in stormy weather

F-15 safely landed with one wing

Fly-By-Feel Autonomous Flight

Fly-by-Feel Autonomous Flight

But the system must be:

- Minimal or no Weight Increase
- Low Cost in Manufacturing
- Robust in System Integration
- Easy for Installation
- Friendly in Implementation

Pacinian Corpuscle

To measure touch

Bio-inspired Sensory Network

Bio-inspired Smart Materials/Structures

Nerve fiber

OF TECHNOLOGY

What is an Intelligent Material

Signals

Brain Somatosensory cortex

Spinal Cord

Nerve receptors

Materials

Materials Development

Multifunctional Materials

Processors/Neuron circuits

Sensor Processing Development

STAGE 3
Autonomous decision

STAGE 2
State Quantification

STAGE 1
State Classification

Multi-functional Sensors

Research Team

Stanford	Fu-Kuo Chang (PI) – Aero/Astro Boris Murmann – EE Shan Xiang Wang – EE Andrew Ng – CS
UCLA	Yong Chen – ME Greg Carman – ME
NYIT	Rahmat Shoureshi – ME
UC Boulder	Robert McLeod – ECEE
UBC	Frank Ko – ME Peyman Servati – ECEE
JHU	Somnath Ghosh – ME

Major Tasks

Bio-inspired Sensor Network

 Stretchable sensor network to accommodate large arrays of sensors and electronics over a large area.

Micro/Nano Sensors for State Sensing

Multi-physic multi-scale sensors with an ease of network integration.

Neuron Circuits and Interface Electronics

 Bio-inspired neuron circuits with appropriate electronics to interface with various sensors.

Modeling, Design, and Prognostics

 Multi-physic and multi-scale modeling of multifunctional materials with distributed sensing capabilities for design and validation.

Diagnostics and State Awareness

 Embedded intelligent software, Algorithms, tools, and processes to determine the state of the materials in real time.

Integration

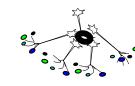
An effort to develop a prototype of "intelligent sensing material."

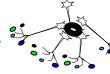
Bio-inspired Sensory Network

Chang, Peumans/Wang - Stanford

Robust and Low Cost Materials Development

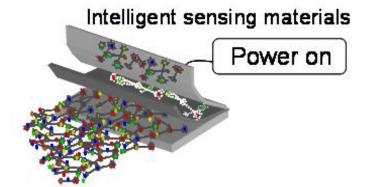
Multifunctional Materials


Networks


Processors/Neuron circuits

Micro Fabrication for Macro Application

Bio-inspired Sensory Network



MACRO-SCALE (ULTRA-LARGE AREAS)

Fly-by-Feel Autonomous Vehicle

Step 5: Training and Learning Step 4: integration and Functionalization

Step 3: Network Stretch and Expansion

Making network

Adding sensors/electronics

CMOS Process

Step 1: Stretchable Network Design

CMOS/MEMS Process

Step 2: Nano/Microsensors and Electronics

NANO-MICROSCALE DESIGN AND FABRICATION (CMOS PROCESSES)

OTFD Sensors for Stretchable Network

- Integration of Organic Thin Film Diodes (OTFDS)
 - Packaged OTFDs in the network
 - Improved diode performance
 - Protect OTFDs in harsh environment:
 - High temperature(350°C),
 - Solvents, acids
 - To measure temperature

Temperature measurement (I~T) of an OTFD

Video:169 nodes network after release

Coating 3D bodies

Expanded network

G.Lanzara, J. Feng and F.K.Chang, Smart Materials and Structures, 19, 045013, 2010

G.Lanzara et al, Advanced Materials, 2010

Fully Stretched Sensory Network

Multi-physic and Multi-scale Sensors

Chang, Wang – Stanford McLeod – UC Boulder Carman – UCLA Servati, Ko – UBC

Network Functionalization

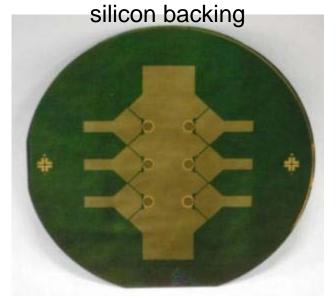
PZT A

PZT Actuators/Sensors for Stretchable Network

Printed

Stretch Network

Structure


State

Recent Accomplishments

 Screen printed piezo-ceramics integrated into C-Mos type processing & released onto a polyimide film with electrodes.

Thick film piezos on a

Piezos released onto a polyimide film

- Innovations
 - New method to transfer piezos from a fabrication substrate to an organic substrate

Ongoing Work

- Create a stretchable network from the screen printed piezos released onto an organic backing
- Characterization of materials
- New transducer designs

Stretchable wire pattern

Piezos on a polyimide film

Air Flow Sensor Configuration

(Yue Guo, Prof. Shan X. Wang)

■ Aim: Obtain the real-time air flow profile (velocity + direction) surrounding the entire airplane

- 1. Air Flow hits the pillar
- 2. Deflection in the beam
- 3. Strain in the sensing elements
- Inverse Magnetostrictive Effect
 Stress → Magnetization rotation
 → Resistivity change, ΔR/R
- Or Piezoresistive Effect
- 5. Voltage change from $\Delta R/R$

Pillar	Values	
Length	50 um	
Width	50 um	
Height	250 um	

Beam	Values	
Length	350 um	
Width	52 um	
Thickness	1 um	

Magnetoresistance (MR) Air Flow Sensor

Bottom View of Beams

Ni₈₆Fe₁₄ Sensing Elements

$$H_{k} \sin(\theta - \frac{\pi}{4})\cos(\theta - \frac{\pi}{4}) + \frac{3\lambda_{s}\sigma}{\mu_{0}M_{s}}\sin\theta\cos\theta = 0$$

MR signal is related to beam stress and thus air flow velocity.

stress

Design Comparison

Sensing Elements	L _{sensor}	W _{sensor}	t _{sensor}
Magneto-resistance	4um x10	4um x4	25nm
Piezo-resistance	50um	25um	40nm

Strain 1e-5	Magneto-resistance	Piezo-resistance
Power	1 mW	1 mW
Resistivity	15e-8 ohm·m (Ni ₈₄ Fe ₁₆)	2e-5 ohm·m (PolySi)
Resistance	240 ohm	1000 hm
Voltage & Current	0.5 V, 2 mA	1 V, 1 mA
Current Density	2e10 A/m ²	1e9 A/m ²
Resistance Change	0.11 % (AMR), 0.44 % (GMR)	0.029 %
Voltage Change	0.55 mV (AMR), 2.2 mV (GMR)	0.29 mV
Johnson Noise	2 nV/√Hz	4 nV/√Hz

Anisotropic magnetoresistive (AMR) and giant magnetoresistive (GMR) air flow sensors with 1 mW power consumption are feasible and outperform similar piezoresistive air flow sensors.

Magnetoelectric Sensors for Detecting Magnetic Field (Carman's Group)

Beak and/or visual cortex contains superparamagnetic particles to track/see magnetic flux lines

Develop sensitive magnetometer using biological inspiration & phenomena present only at nanoscale

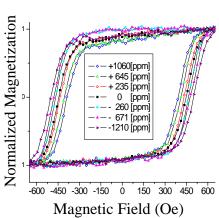
Method of Approach

Nanoscale Magnetoelectric Materials for Detecting Magnetic Fields

2001 – Giant magnetoelectric in <u>bulk</u> composite (Ryu) > 1000 papers

2004 – Magnetoelectric in thin film

2007 – Magnetoelectric in SD (UCB and UCLA) > 5


2011 – Magnetoelectric in SP (UCLA)

Thin film

Single domain

Superparamagnetic

> 50

~ ()

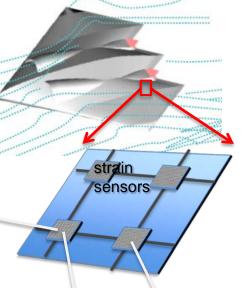
Method of Approach

Magnetoelectric Control of Superparamagnetism

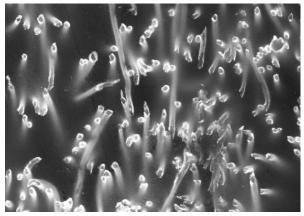
- Magnetoelectric composite induces strain in Ni nanoparticles
- E=0 produces superparamagnetic behavior
- E=0.4 MV/m produces single domain structure

Magnetoelectric composite

Nano-Strain Sensors (Servati & Ko's Group)


Strain sensors based on electrospun nanofibers.

• Core-shell nanofibers for ultra-sensitive strain



SEM photomicrograph of core-shell (Au-PAN) conductive nanofiber mesh.

Cross section of core-shell (Au-PAN) nanofiber mesh in PDMS.

Several parallel nanofiber strain sensors embedded in PDMS.

strain

Accomplishments: Stable, High-Sensitivity Response for Planar Strain and Vibrational Monitoring

Stable change in resistance over 1000 repeated stretching and unloading of the sensor.

Change in resistance and gauge factor *K* under uniaxial tensile strain.

Vibrations

Data flow and CU program overview

Wing with sensors and actuators

Living neural network

Multi-channel sensor interrogation

Precision signal processing

Precision interrogation results

Multiple (100's) sensor precision ranging supported by single network.

Higher bit-depth DAQ

- New noise floor = 3.0 attoseconds
- Range uncertainty = ± 1.29
 Angstroms in silicon

Neuron Circuits and Interface Electronics

Chen – UCLA Murmann – Stanford

Material Development for Reasoning

Neuron Circuits for Stretchable Network (Chen's Group)

In this project, we plan to develop electronic neuron circuits based on carbon nanotube/polymer composites, and integrate the neuron circuits with sensing networks that can (1) promptly process a large amount of signals in parallel to recognize exogenous threats accurately and effectively, (2) implement real-time learning autonomously, and (3) provide dynamic prognosis for appropriate response for UAV.

Synaptic Transistor & Large-scale Neuron Circuit

A synaptic transistor has been developed by integrating CNT and polymer materials to emulate biological synapse with spike signal processing, learning, and memory functions.

An image of a large scale neuron circuit by integrating 8192 synaptic transistors with Si MOS circuits with the functions of signal parallel processing, real-time pattern recognition, adaptive learning.

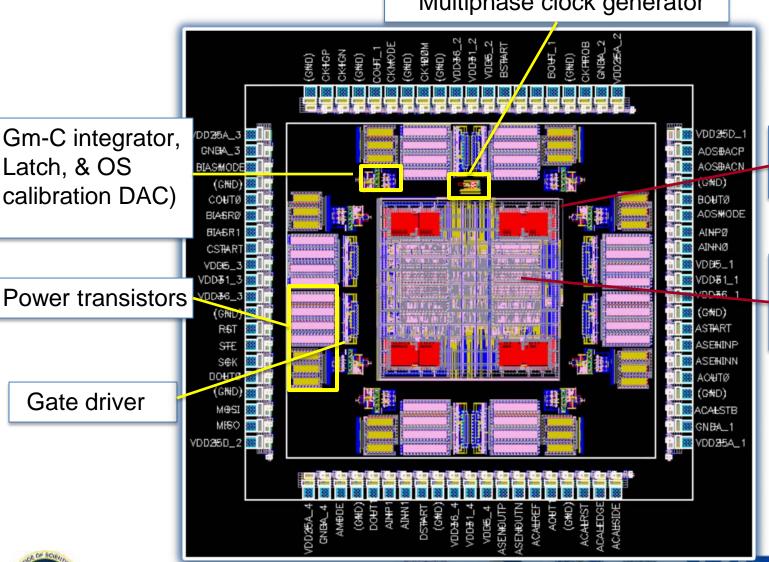
Dynamic Interaction between Neuron Circuit & System

- Neurologically inspired theoretical models and architectures has been directly integrated and applied to establish the circuit architecture.
- The circuits have been integrated with the temperature sensing network developed at Prof. Chang's group at Stanford University.
- ❖ We will demonstrate (1) promptly process a large amount of signals in parallel to recognize exogenous threats accurately and effectively, (2) implement real-time learning autonomously, and (3) provide dynamic prognosis for appropriate response for UAV.

Interface Circuits for PZT Actuators (Murmann's Group)

Densely Integrated Interface Circuits for State Sensing Network

- <u>Using Pulse-Width-Modulation (PWM)</u> to generate the excitation waveform
 - Render the waveform by a series of precisely timed binary pulses
 - High power efficiency: (a) is bounded by 78%; (b) is bounded by 100%


Latch, & OS

Gate driver

AFOSR-MURI Bio-inspired Sensory Network

Chip layout (to be taped out on 8/19)

Multiphase clock generator

OF TECHNOLOGY

SRAM(PWM

time table)

digital control

~40,000 logic

gates

Potential Way

Baseline Generation

Generate large database of sensor responses for different structural states during training

Record sensor responses at state 'S₁'

Record sensor responses at state 'S₂'

Record sensor responses at state 'S_N'

- Enormous amount of effort & time consumption
- Next to impossible to span entire range of environmental conditions and structural states

The Proposed Approach

Data Driven Techniques

Physics based Strategies

types

Modeling and Prognostics for Design and Validation

Ghosh – Johns Hopkins University Chang – Stanford

Mechanical and Electromagnetic Coupling Modeling

Methods of Approach

Coupled Simulation

Multi-time Scaling

To develop an coupled multi-scale, multi-physics computational model and code for analysis of electromagnetic devices, e.g. sensors, antenna leading to design

Large Deformation Dynamic Response

Nonlinear hyper-elastic material

$$\underline{\underline{S}} = \lambda \cdot tr(\underline{\underline{E}}) + 2\mu \cdot \underline{\underline{E}}$$

Finite deformation problem

$$\int_{\Omega_{o}} \left(\delta \underline{u}^{T} \rho_{o} \underline{i} \underline{i} \right) dV + \int_{\Omega_{o}} \left(\delta \underline{F}^{T} \cdot \underline{P} \right) dV - \int_{\Omega_{o}} \left(\delta \underline{u}^{T} \rho_{o} \underline{b} \right) dV$$

$$= \int_{\partial \Omega_{o}} \delta \underline{u}^{T} \underline{t}_{o} dS$$
Solve for
$$\dot{u} \& u$$

 \underline{S} : 2ndPiola-Kirchhoff Stress Tensor

E: Lagrangian Green Strain Tensor

<u>u</u>: Displacement

 λ, μ : Lame Constants

Transient Electromagnetic Field

Maxwell equations in total Lagrangian

$$\nabla \times (\underline{\boldsymbol{H}}(\underline{\boldsymbol{X}},t)) = \frac{\partial \underline{\boldsymbol{D}}(\underline{\boldsymbol{X}},t)}{\partial t} + \underline{\boldsymbol{J}}(\underline{\boldsymbol{X}},t)$$

Scalar and vector potential in reference configuration

$$\underline{\boldsymbol{B}} = \nabla \times \underline{\boldsymbol{A}} \qquad \underline{\boldsymbol{E}} = -\nabla \varphi - \underline{\dot{\boldsymbol{A}}}$$

$$\underline{\underline{\boldsymbol{H}}\left(\underline{\boldsymbol{X}},t\right)} = \begin{bmatrix} \left(\varepsilon_{0}J\left\{-\underline{\nabla}\Phi - \underline{\dot{\boldsymbol{A}}} - (\underline{\underline{F}}^{-1} \bullet \underline{\dot{\boldsymbol{\mu}}}) \times (\underline{\nabla} \times \underline{\boldsymbol{A}})\right\} \bullet \underline{\underline{C}}^{-1}\right) \times \left(\underline{\underline{F}}^{-1} \bullet \underline{\dot{\boldsymbol{\mu}}}\right) \\ + \frac{1}{\mu_{0}J}\left\{(\underline{\nabla} \times \underline{\boldsymbol{A}}) \bullet \underline{\underline{C}}\right\} \end{bmatrix}$$

Coupling of Mechanical and Electromagnetic Field

Coupled static electromagnetic field and dynamic mechanical field

- 1. Electromagnetic field is affected by the mechanical field
- 2. The magnetic potential is evolving by the velocity field other than the displacement field

Coupled transient electromagnetic field and dynamic field

- 1. Electromagnetic field is evolving with the mechanical field
- 2. Frequency difference brings in significant computational expense

Multi-physics Spectral Element Method (Chang's Group)

Efficient multi-physics computation tool for modeling ultrasonic waves

Design of Piezoelectric Sensor Network

- PESEA: accurate simulations for a complex structure
- Genetic algorithm: 100% damage detectability with minimum number of Piezo actuators and sensors

Integration of PESEA and GA-based Optimization

Layout

Diagnostics and State Awareness

Chang, Ng – Stanford Shoureshi – NYIT

Sensor Data Processing

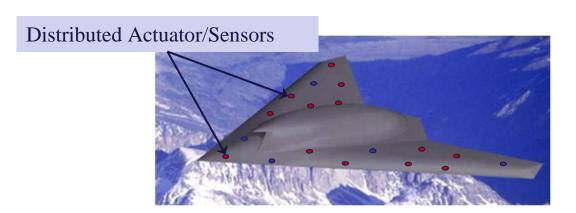
STAGE 3
Autonomous decision

Prognosis, Decision Planning and Control

STAGE 2
State Quantification

Structural Damage Diagnosis (Type, location, extent) Flow Field
Distribution
(temperature,
pressure, strain etc.)

STAGE 1 State Classification



Motivation

Sensor Data Interpretation in Real-time

Sensor Response: $S_i = f(\Delta load, \Delta temp., localized damage, \Delta BCs, \Delta sensor state ...)$

How to accurately assess the structural state information from a network of multi-functional sensors?

State Classification: Designed features

Table: Sensor signal measurements under simulated environmental

Number of Samples	Temperature Range	ons Load Range	Simulated Damage
4 coupons	30°C - 95°C	0kips – 5kips	0.25" - 1.5" Notch at the edge

4 sensing paths per actuator; Paths per measurement = 16; # of measurements = 1136

Feature Space Representation

Difficult to identify true state under combined action of load and damage; State Classification Accuracy (logistic regression) < 30%

State Classification: Self-Learned Features

Unsupervised Features Learning: Neural-net based 'Sparse Auto-Encoders'

Self-learned features outperform the self-designed features for state classification

Scaling Feature Learning

 Current system scales better; but still some distance to go for a full-scale application.

Prior art Our previous system Fly-by-feel aircraft Goal: 107 to 108 neurons 104 neurons 10⁶ neurons 1M parameters > 2M parameters 100M parameters 50,000 examples 50,000 examples >10M examples Local receptive fields, weight-tying

A STATE OF THE PARTY OF THE PAR

Approach

- Fold prior MURI work into extremely large-scale system:
 - Scalable K-means learnir 66M parameters
 - Online training 57M examples.
 - Locally connected neurons.
 - New invariant-feature learning approach.

Proof-of-concept

Applied to unlabeled image data.
 66M parameters, 57M data points.
 (1000x more data than standard benchmarks.)

1.4 million images.

57 million patches.

Single neuron selects complex patterns like

From Sensing to Decision Making (Shoureshi's Group)

Goals

- To develop an analytical technique for observability and controllability of large-scale, dynamic systems
- To develop a bio-inspired data/information architecture for feature-based global diagnostics of a large-scale system
- To develop a bio-inspired, feature-based reconfigurable control system to maintain vehicle functionality in the presence of system failures
- Design a testbed to assess MURI team research results

Controller and Diagnostics Testbed

Prototype I

Prototype II: Learning without Training

Fly-By-Feel UAV

Learning from others Learning from itself

- Lower Cost in Manufacturing
- •Reduced Cost in Maintenance and Operation
- •Energy Saving for Smaller Size
- •Minimal Human Risk

Traditional design of structures is divided into a few disciplines

Resulting in

overdesigned structures

→heavy airplanes

→time consuming inspections

→inappropriate maintenance

schedules

Technologies developed during MURI

Requires *re-thinking* the traditional design strategies

Intelligent design

constitutes the interplay of many

Concept: "Build confidence on design"

Life cycle management

Manufacturing

Transportation

Assembly

Service

Maintenance & Repair

